ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Recombinant Dna Technology or Dna Cloning

Essay by   •  April 25, 2011  •  Research Paper  •  1,703 Words (7 Pages)  •  1,531 Views

Essay Preview: Recombinant Dna Technology or Dna Cloning

Report this essay
Page 1 of 7

Cloning is the process of creating an identical copy of something. This means that every single bit of DNA is the same between the two. In biology, it collectively refers to processes used to create copies of DNA fragments (molecular cloning), cells (cell cloning), or organisms. There are different types of cloning and cloning technologies that can be used for other purposes besides producing the genetic twin of another organism. A basic understanding of the different types of cloning is key to taking an informed stance on current public policy issues and making the best possible personal decisions. The following three types of cloning technologies are: recombinant DNA technology or DNA cloning, reproductive cloning, and therapeutic cloning.

Recombinant DNA Technology or DNA Cloning

Recombinant DNA technology, or DNA cloning refers to the transfer of a DNA fragment of interest from one organism to a self-replicating genetic element such as a bacterial plasmid. The DNA of interest can then be propagated in a foreign host cell. This technology has been around since the 1970s, and it has become a common practice in molecular biology labs today. Scientists studying a particular gene often use bacterial plasmids to generate multiple copies of the same gene. Plasmids are self-replicating extra-chromosomal circular DNA molecules, distinct from the normal bacterial genome. Plasmids and other types of cloning vectors are used by Human Genome Project researchers to copy genes and other pieces of chromosomes to generate enough identical material for further study. To clone a gene, a DNA fragment containing the gene of interest is isolated from chromosomal DNA using restriction enzymes and then united with a plasmid that has been cut with the same restriction enzymes. When the fragment of chromosomal DNA is joined with its cloning vector in the lab, it is called a recombinant DNA molecule.

Reproductive Cloning

Reproductive cloning is a technology used to generate an animal that has the same nuclear DNA as another currently or previously existing animal. In a process called somatic cell nuclear transfer (SCNT), scientists transfer genetic material from the nucleus of a donor adult cell to an egg whose nucleus, and thus its genetic material, has been removed. The reconstructed egg containing the DNA from a donor cell must be treated with chemicals or electric current in order to stimulate cell division. Once the cloned embryo reaches a suitable stage, it is transferred to the uterus of a female host where it continues to develop until birth. Animals created by using nuclear transfer technology are not truly an identical clones of the donor animal. Only the clone's chromosomal or nuclear DNA is the same as the donor. Some of the clone's genetic materials come from the mitochondria in the cytoplasm of the enucleated egg. Mitochondria, which are organelles that serve as power sources to the cell, contain their own short segments of DNA. Acquired mutations in mitochondrial DNA are believed to play an important role in the aging process.

Therapeutic Cloning

Therapeutic cloning, also called, embryo cloning, is the production of human embryos for use in research. The goal of this process is not to create cloned human beings, but rather to harvest stem cells that can be used to study human development and to treat disease. Stem cells are important to biomedical researchers because they can be used to generate virtually any type of specialized cell in the human body. Stem cells are extracted from the egg after it has divided for 5 days. The egg at this stage of development is called a blastocyst. The extraction process destroys the embryo, which raises a variety of ethical concerns. Many researchers hope that one day stem cells can be used to serve as replacement cells to treat heart disease, Alzheimer's, cancer, and other diseases.

In November 2001, scientists from Advanced Cell Technologies (ACT), a biotechnology company in Massachusetts, announced that they had cloned the first human embryos for the purpose of advancing therapeutic research. To do this, they collected eggs from women's ovaries and then removed the genetic material from these eggs with a needle less than 2/10,000th of an inch wide. A skin cell was inserted inside the enucleated egg to serve as a new nucleus. The egg began to divide after it was stimulated with a chemical called ionomycin. The results were limited in success. Although this process was carried out with eight eggs, only three began dividing, and only one was able to divide into six cells before stopping.

What animals have been cloned?

Scientists have been cloning animals for many years. In 1952, the first animal, a tadpole, was cloned. Before the creation of Dolly, the first mammal cloned from the cell of an adult animal, clones were created from embryonic cells. Since Dolly, researchers have cloned a number of large and small animals including sheep, goats, cows, mice, pigs, cats, rabbits, and a gaur. All these clones were created using nuclear transfer technology. Hundreds of cloned animals exist today, but the number of different species is limited. Attempts at cloning certain species such as monkeys, chickens, horses, and dogs, have been unsuccessful. Some species may be more resistant to somatic cell nuclear transfer than others. The process of stripping the nucleus from an egg cell and replacing it with the nucleus of a donor cell is a traumatic one, and improvements in cloning technologies may be needed before many species can be cloned successfully.

Pro Arguments of Cloning

One major positive argument is that scientists hope that one day therapeutic cloning can be used to generate tissues and organs for transplants. To do this, DNA would be extracted from the person in need of a transplant and inserted into an enucleated egg. After the egg containing the patient's DNA starts to divide, embryonic stem cells that can be transformed into any type of tissue would be harvested. The stem cells would be used to generate an organ or tissue that is a genetic match to the recipient. In theory, the cloned organ could then be transplanted into the patient without the risk of tissue rejection. If organs could be generated

...

...

Download as:   txt (10.4 Kb)   pdf (126.1 Kb)   docx (12.8 Kb)  
Continue for 6 more pages »
Only available on ReviewEssays.com