ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid

Essay by   •  October 25, 2010  •  Essay  •  1,005 Words (5 Pages)  •  1,435 Views

Essay Preview: Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid

Report this essay
Page 1 of 5

Only a small fraction of our total DNA makes us different from gorillas, chimpanzees and other primates. An even smaller fraction makes one person different from the next. DNA Deoxyribonucleic acid and ribonucleic acid are two chemical substances involved in transmitting genetic information from parent to offspring. It was known early into the 20th century that chromosomes, the genetic material of cells, contained DNA. In 1944, Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty concluded that DNA was the basic genetic component of chromosomes. Later, RNA would be proven to regulate protein synthesis. DNA is the genetic material found in most viruses and in all cellular organisms. Some viruses do not have DNA, but contain RNA instead. Depending on the organism, most DNA is found within a single chromosome like bacteria, or in several chromosomes like most other living things. DNA can also be found outside of chromosomes. It can be found in cell organelles such as plasmids in bacteria, also in chloroplasts in plants, and mitochondria in plants and animals. All DNA molecules contain a set of linked units called nucleotides. Each nucleotide is composed of three things. The first is a sugar called deoxyribose. Attached to one end of the sugar is a phosphate group, and at the other is one of several nitrogenous bases. DNA contains four nitrogenous bases. The first two, adenine and guanine, are double-ringed purine compounds. The others, cytosine and thymine, are single-ringed pyrimidine compounds. Four types of DNA nucleotides can be formed, depending on which nitrogenous base is involved. The phosphate group of each nucleotide bonds with a carbon from the deoxyribose. This forms what is called a polynucleotide chain. James D. Watson and Francis Crick proved that most DNA consists of two polynucleotide chains that are twisted together into a coil, forming a double helix. Watson and Crick also discovered that in a double helix, the pairing between bases of the two chains is highly specific. Adenine is always linked to thymine by two hydrogen bonds, and guanine is always linked to cytosine by three hydrogen bonds. This is known as base pairing. The DNA of an organism provides two main functions. The first function is to provide for protein synthesis, allowing growth and development of the organism. The second function is to give all of it's descendants it's own protein-synthesizing information by replicating itself and providing each offspring with a copy. The information within the bases of DNA is called the genetic code. This specifies the sequence of amino acids in a protein. DNA does not act directly in the process of protein synthesis because it does not leave the nucleus, so a special ribonucleic acid is used as a messenger. The mRNA carries the genetic information from the DNA in the nucleus out to the ribosomes in the cytoplasm during transcription. This leads to the topic of replication. When DNA replicates, the two strands of the double helix separate From one another. While the strands separate, each nitrogenous base on each strand attracts it's own complement, which as mentioned earlier, attaches with hydrogen bonds. As the bases are bonded an enzyme called DNA polymerase combines the phosphate of one nucleotide to the deoxyribose of the opposite nucleotide. This forms a new polynucleotide chain. The new DNA strand stays attached to the old one through the hydrogen bonds, and together they form a new DNA double helix molecule. As mentioned before, DNA molecules are involved in a process called protein synthesis. Without RNA, this process could not be completed. RNA

...

...

Download as:   txt (5.9 Kb)   pdf (80.9 Kb)   docx (10.5 Kb)  
Continue for 4 more pages »
Only available on ReviewEssays.com
Citation Generator

(2010, 10). Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid. ReviewEssays.com. Retrieved 10, 2010, from https://www.reviewessays.com/essay/Dna-and-Rna-Deoxyribonucleic-Acid-and-Ribonucleic/4763.html

"Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid" ReviewEssays.com. 10 2010. 2010. 10 2010 <https://www.reviewessays.com/essay/Dna-and-Rna-Deoxyribonucleic-Acid-and-Ribonucleic/4763.html>.

"Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid." ReviewEssays.com. ReviewEssays.com, 10 2010. Web. 10 2010. <https://www.reviewessays.com/essay/Dna-and-Rna-Deoxyribonucleic-Acid-and-Ribonucleic/4763.html>.

"Dna and Rna - Deoxyribonucleic Acid and Ribonucleic Acid." ReviewEssays.com. 10, 2010. Accessed 10, 2010. https://www.reviewessays.com/essay/Dna-and-Rna-Deoxyribonucleic-Acid-and-Ribonucleic/4763.html.