The Effect of Different Concentrations of Salt Water on the Growth of Bean Plants
Essay by review • December 29, 2010 • Research Paper • 1,506 Words (7 Pages) • 2,445 Views
Essay Preview: The Effect of Different Concentrations of Salt Water on the Growth of Bean Plants
The Effect of Different Concentrations of Salt Water on the Growth of Bean Plants
Table of Contents
Abstract 3
Introduction 4-5
Methods and Materials 6
Results 7
Discussion-Conclusion 8
Literature Cited 9
Acknowledgements 10
Appendix 11-12
Abstract
The problem of this project is what is the effect of different concentrations of salt water on the growth of bean plants. The hypothesis for the experiment is that the beans will not germinate and grow as well using saltwater as opposed to freshwater. The germination of a seed is the carrying on of growth of the embryo plant inside the seed. Seeds need water and oxygen to germinate, so they are best started in a light, loose soil that will not compact, get soggy, or crust over. Free flow of water and air are a must. Any disturbances on the plant may cause a negative effect on the plant growth. Plants need water and light to carry out the process of photosynthesis. Photosynthesis is the process by which plants use the energy from sunlight to produce sugar.
To conduct this experiment first, plant bean seeds in different pots, and then place the pots in a place where each pot can get the same amount of water. Next, water half of the pots with 300 ml of saltwater, and water the other half of the pots with 300 ml of freshwater. Measure the sprouts and take pictures everyday.
. Observe the beans for days. Record the sprouts' average growth every day. Form charts and graphs to show data.
Introduction
There are many processes and cycles that a plant must go through for it to grow into a mature and healthy plant. The first process that a plant goes through is photosynthesis. Photosynthesis is the process in which conversion of energy from light into chemical energy. The process happens in green plants and photosynthetic bacteria during biochemical reactions. ("Photosynthesis." Gale Encyclopedia of Science, 2nd ed. 6 vols. Gale Group, 2001. Reproduced in Student Resource Center. Farmington Hills, Mich.: Gale Group. October 2001. http://galenet.galegroup.com/servlet/SRC/)
The stages of photosynthesis are very complicated, and it is not just a one step process. During many stages in the process, electrons are changed from one element to another, and they mix to make carbohydrates. ("Photosynthesis." U*X*L Science. U*X*L, 1998. Reproduced in Student Resource Center. Farmington Hills, Mich.: Gale Group. October, 2001. http://galenet.galegroup.com/servlet/SRC/)
The next cycle that plants need to grow is the carbon cycle. The carbon cycle describes how carbon moves in the atmosphere. It describes carbon when it is in its most gaseous state: carbon dioxide. The carbon goes from the atmosphere, through organisms, to the ocean, and back to the atmosphere. The three most common ways carbon gets into the atmosphere. They are cellular respiration, volcanoes erupting, and the burning of fossil fuels such as coal. Next in the carbon cycle is the plants must intake the carbon. The plants through stomata, which are very small openings in the leaves, take in the carbon. The plants change the carbon in carbon dioxide into the carbon in organic compounds. The organic compounds are sugar, proteins, and fats. The products from the carbon cycle mix with water, and move along the process, which was previously stated, called photosynthesis. ("Carbon cycle." Gale Encyclopedia of Science, 2nd ed. 6 vols. Gale Group, 2001. Reproduced in Student Resource Center. Farmington Hills, Mich.: Gale Group. October 2001. http://galenet.galegroup.com/servlet/SRC/)
Materials
1. 5 ceramic pots
2. potting soil
3. 150 pea seeds
4. 5 one-gallon jugs
5. Miracle-Grow All-Purpose Fertilizer
6. Metric Ruler
7.
Procedures
First, plant bean seeds in different pots, and then place the pots in a place where each pot can get the same amount of water. Next, water half of the pots with 300 ml of saltwater, and water the other half of the pots with 300 ml of freshwater. Measure the sprouts and take pictures everyday.
Results
Table-A and Graph-A have corresponding information and data. The table and graph show the amount of plants from each concentration of saltwater that were healthy, and it shows how many were not healthy. The data shows that most of the plants were healthy, and that the control had no unhealthy plants. Table-B and Graph-B also have corresponding information and data. The table and graph show the average height of the plants. The data shows that as you gave the plants more saltwater, they did not grow quite as tall. Table-C and Graph-C also have corresponding information and data. Table-C is a stem and leaf plot table. It shows the individual growth of each plant in each test group. The data is summed up into a five number summary. Graph-C is a box and whiskers graph. This shows the five number summaries on a graph. Table-D and Graph-D also show the same data and information. They show the variance and standard deviation for each test group.
Discussion-Conclusion
The purpose of the experiment is to find out if the concentration of salt water has an effect on the growth of bean plants. The major findings are that small amounts of salt water do not have an effect on the growth of the plants. However, if the plants are given too much salt
...
...