ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Genetic Engineering

Essay by   •  October 16, 2010  •  Research Paper  •  3,037 Words (13 Pages)  •  2,397 Views

Essay Preview: Genetic Engineering

Report this essay
Page 1 of 13

Genetic Engineering

Altering the Face of Science

By Krupa Desai

Science is a creature that continues to evolve at a much higher rate than the beings

that gave it birth. The transformation time from tree-shrew, to ape, to human far exceeds the time from analytical engine, to calculator, to computer. But science, in the past, has always remained distant. It has allowed for advances in production, transportation, and even entertainment, but never in history will science be able to as deeply affect our lives as genetic engineering will undoubtedly do. With the birth of this new technology, scientific extremists and anti- technologists have risen in arms to block its budding future. Spreading fear by misinterpretation of facts, they promote their hidden agendas in the halls of the United States congress.

Genetic engineering is a safe and powerful tool that will yield unprecedented results, specifically in the field of medicine. It will usher in a world where gene defects, bacterial disease, and even aging are a thing of the past. By understanding genetic engineering and its history, discovering its possibilities, and answering the moral and safety questions it brings forth, the blanket of fear covering this remarkable technical miracle can be lifted. The first step to understanding genetic engineering, and embracing its possibilities for society, is to obtain a rough knowledge base of its history and method. The basis for altering the evolutionary process is dependent

on the understanding of how individuals pass on characteristics to their offspring. Genetics achieved its first foothold on the secrets of nature's evolutionary process when an Austrian monk named Gregor Mendel developed the first "laws of heredity." Using these laws, scientists studied the characteristics of organisms for most of the next one hundred years following Mendel's discovery. These early studies concluded that each organism has two sets of character determinants, or genes (Stableford 16). For instance, in regards to eye color, a child could receive one set of genes from his father that were encoded one blue, and the other brown. The same child could also receive two brown genes from his mother. The conclusion for this inheritance would be the child has a three in four chance of having brown eyes, and a one in three chance of having blue eyes (Stableford 16). Genes are transmitted through chromosomes which reside in the nucleus of every living organism's cells. Each chromosome is made up of fine strands of deoxyribonucleic acids, or DNA. The information carried on the DNA determines the cells function within the organism. Sex cells are the only cells that contain a complete DNA map of the organism, therefore, "the structure of a DNA molecule or combination of DNA molecules determines the shape, form, and function of the [organism's] offspring" (Lewin 1).

DNA discovery is attributed to the research of three scientists, Francis Crick, Maurice Wilkins, and James Dewey Watson in 1951. They were all later accredited with the Nobel Price in physiology and medicine in 1962 (Lewin 1). "The new science of genetic engineering aims to take a dramatic short cut in the slow process of evolution" (Stableford 25). In essence, scientists aim to remove one gene from an organism's DNA, and place it into the DNA of another organism. This would create a new DNA strand, full of new encoded instructions; a strand that would have taken Mother Nature millions of years of natural selection to develop. Isolating and removing a desired gene from a DNA strand involves many different tools. DNA can be broken up by exposing it to ultra-high- frequency sound waves, but this is an extremely inaccurate way of isolating a desirable DNA section (Stableford 26). A more accurate way of DNA splicing is the use of "restriction enzymes, which are produced by various species of bacteria" (Clarke 1). The restriction enzymes cut the DNA strand at a particular location called a nucleotide base, which makes up a DNA molecule. Now that the desired portion of the DNA is cut out, it can be joined to another strand of DNA by using enzymes called ligases. The final important step in the creation of a new DNA strand is giving it the ability to self-replicate. This can be accomplished by using special pieces of DNA, called vectors, that permit the generation of multiple copies of a total DNA strand and fusing it to the newly created DNA structure. Another newly developed method, called polymerase chain reaction, allows for faster replication of DNA strands and does not require the use of vectors (Clarke 1).

The possibilities of genetic engineering are endless. Once the power to control the

instructions, given to a single cell, are mastered anything can be accomplished. For

example, insulin can be created and grown in large quantities by using an inexpensive gene manipulation method of growing a certain bacteria. This supply of insulin is also not dependent

on the supply of pancreatic tissue from animals. Recombinant factor VIII, the blood clotting agent missing in people suffering from hemophilia, can also be created by genetic engineering. Virtually every person who was treated with factor VIII before 1985 acquired HIV, and later AIDS. Being completely pure, the bioengineered version of factor VIII eliminates any possibility of viral infection. Other uses of genetic engineering include creating disease resistant crops, formulating milk from cows already containing pharmaceutical compounds, generating vaccines, and altering livestock traits (Clarke 1). In the not so distant future, genetic engineering will become a principal player in fighting genetic, bacterial, and viral disease, along with controlling aging,

and providing replaceable parts for humans.

Medicine has seen many new innovations in its history. The discovery of

anesthetics permitted the birth of modern surgery, while the production of antibiotics in the 1920s minimized the threat from diseases such as pneumonia, tuberculosis and cholera. The creation of serums which build up the body's immune system to specific infections, before being laid low with them, has also enhanced modern medicine greatly (Stableford 59). All of these discoveries, however, will fall under the broad shadow of genetic engineering when it reaches its apex in the medical community. Many people suffer from genetic diseases ranging from thousands of types of cancers, to blood, liver, and lung disorders. Amazingly, all of these will be able to be treated by genetic engineering,

...

...

Download as:   txt (18.6 Kb)   pdf (193.9 Kb)   docx (16.9 Kb)  
Continue for 12 more pages »
Only available on ReviewEssays.com
Citation Generator

(2010, 10). Genetic Engineering. ReviewEssays.com. Retrieved 10, 2010, from https://www.reviewessays.com/essay/Genetic-Engineering/4105.html

"Genetic Engineering" ReviewEssays.com. 10 2010. 2010. 10 2010 <https://www.reviewessays.com/essay/Genetic-Engineering/4105.html>.

"Genetic Engineering." ReviewEssays.com. ReviewEssays.com, 10 2010. Web. 10 2010. <https://www.reviewessays.com/essay/Genetic-Engineering/4105.html>.

"Genetic Engineering." ReviewEssays.com. 10, 2010. Accessed 10, 2010. https://www.reviewessays.com/essay/Genetic-Engineering/4105.html.